is pleased to present the 2013 Water Quality Report (Consumer Confidence Report) to let customers know where Hayward drinking water comes from, how it is treated, the results of water quality monitoring, and other important information about water quality.

The City of Hayward purchases all of its water from the San Francisco Public Utilities Commission (SFPUC). The results of water quality monitoring by the SFPUC and City of Hayward confirm that the water delivered to Hayward customers in 2013 met all state and federal standards. Important information about any contaminants that were detected in the drinking water in 2013 can be found in this report.

What is the Source of Our Drinking Water?
SFPUC is the sole supplier of water to Hayward. The Hetch Hetchy watershed, an area located in Yosemite National Park, provides the majority of water delivered by SFPUC to Hayward. Spring snow melt runs down the Tuolumne River and is stored in the Hetch Hetchy Reservoir.

SFPUC provides a small amount of water from the Alameda watershed, which is located in the East Bay and stored in the Calaveras and San Antonio Reservoirs. The two local reservoirs hold rain, local runoff, and some Hetch Hetchy water. This surface water source is supplemented by a small amount of ground water from Sunol Filter Galleries near the town of Sunol.

Is Our Water Filtered and Treated?
The Hetch Hetchy reservoir water supply meets all federal and state requirements for watershed protection, disinfection treatment, bacteriological quality, and operational standards. As a result, the U.S. Environmental Protection Agency and the California Department of Public Health (CDPH) have granted the Hetch Hetchy water supply an exemption from filtration requirements. SFPUC monitors the Hetch Hetchy watershed weather conditions, water turbidity levels, microbial contaminants, maintains aqueduct disinfection levels in the water, and complies with reporting requirements. This enables SFPUC to maintain a filtration exemption for the Hetch Hetchy source.

That portion of the water that is stored locally in the Calaveras and San Antonio reservoirs, including stored Hetch Hetchy water, is treated and filtered. SFPUC adds fluoride to all water delivered to all its whole sale customers including Hayward.
SFPUC aggressively protects the natural water resources entrusted to its care. Its annual Hetch Hetchy Watershed survey evaluates the sanitary conditions, water quality, potential contamination sources, and the results of watershed management activities by SFPUC and its partner agencies, including the National Park Service, to reduce or eliminate contamination sources. SFPUC also conducts sanitary surveys of the local Alameda and Peninsula watersheds every five years. These surveys identified wildlife and human activity as potential contamination sources. The reports are available for review at the CDPH’s San Francisco District office (510-620-3474).

HOW DO DRINKING WATER SOURCES BECOME POLLUTED?
Sources of drinking water (both tap water and bottled water) typically include rivers, lakes, oceans, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in the source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, USEPA and the California Department of Public Health prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

WHO SHOULD SEEK ADVICE ABOUT DRINKING WATER?
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, as well as some elderly and infants can be particularly at risk from infections. These individuals should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the USEPA Safe Drinking Water Hotline (1-800-426-4791) or at www.epa.gov/safewater.

FOR MORE INFORMATION...
If you would like more information about Hetch Hetchy water or water quality monitoring, please contact the SFPUC Water Quality Bureau at 877-737-8297 or visit its website at www.sfwater.org. For information about the City of Hayward Water Distribution System, please call Alicia Sargiotto at 510-583-4727 or visit www.hayward-ca.gov.
The tables below and on the following page provide important information about contaminants that were detected in the water in 2013. You may be unfamiliar with the terms and abbreviations, so here are definitions to help you understand the water quality summary:

- **Maximum Contaminant Level Goal (MCLG):**
 The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

- **Public Health Goal (PHG):**
 The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

- **Maximum Contaminant Level (MCL):**
 The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.

- **Maximum Residual Disinfectant Level (MRDL):**
 The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

- **Maximum Residual Disinfectant Level Goal (MRDLG):**
 The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

- **Primary Drinking Water Standards:**
 MCLs and MRDLs for contaminants that affect health, along with their monitoring and reporting requirements, and water treatment requirements.

- **Treatment Technique (TT):**
 A required process intended to reduce the level of a contaminant in drinking water.

- **Regulatory Action Level (AL):**
 The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

- **Secondary Maximum Contaminant Level (SMCL):**
 Standards set by the USEPA/California Department of Public Health to protect the odor, taste, and appearance of drinking water.

Contaminants listed in the following tables were detected in 2013 drinking water samples. The tables contain the name of each substance, the highest level allowed by regulation (MCL), if applicable, the ideal goal for public health (PHG), if applicable, the amount detected, typical sources of the contamination, a key to the units of measurement, and notes to explain the findings. Laboratory staff analyzed the water samples for other contaminants. These contaminants, including MTBE, perchlorate, arsenic, herbicides and pesticides, were not detected.

PRIMARY DRINKING WATER STANDARDS

Mandatory Health-Related Standards

(See key and notes on next page)

<table>
<thead>
<tr>
<th>Detected Contaminants</th>
<th>Unit</th>
<th>MCL</th>
<th>PHG (MCLG)</th>
<th>Range</th>
<th>Average (Maximum)</th>
<th>Typical Sources in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBIDITY (SFPUC Treated Water) (1)</td>
<td>NTU</td>
<td></td>
<td>TT = 5</td>
<td>N/A</td>
<td>0.2 – 0.3 (2)</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Unfiltered Hetch Hetchy Water</td>
<td>NTU</td>
<td></td>
<td>TT = 1 (3)</td>
<td>N/A</td>
<td>(0.98)</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>Filtered Water – Sunol Valley WTP</td>
<td>%</td>
<td>95%</td>
<td>99.9%</td>
<td>N/A</td>
<td>-</td>
<td>Soil Runoff</td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS AND PRECURSORS (SFPUC Regional System)</td>
<td>ppm</td>
<td></td>
<td>TT</td>
<td>N/A</td>
<td>1.0 – 3.4</td>
<td>Various natural and man-made sources</td>
</tr>
<tr>
<td>Total Organic Carbon (4)</td>
<td>ppm</td>
<td></td>
<td>TT</td>
<td>N/A</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS AND PRECURSORS (City of Hayward Distribution System)</td>
<td>ppb</td>
<td></td>
<td>80</td>
<td>N/A</td>
<td>36.1 – 77.7 (5)</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs)</td>
<td>ppb</td>
<td>60</td>
<td>N/A</td>
<td>29.9 – 55.3 (6)</td>
<td>By-product of drinking water disinfection</td>
<td></td>
</tr>
<tr>
<td>MICROBIOLOGICAL (SFPUC Regional System)</td>
<td>cysts/L</td>
<td>TT</td>
<td>(0)</td>
<td><0.01 – 0.04</td>
<td><0.01</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>%</td>
<td>5</td>
<td>(0)</td>
<td>0.0 – 1.9 (7)</td>
<td>0.4 (7)</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>MICROBIOLOGICAL (City of Hayward Distribution System)</td>
<td>%</td>
<td>15</td>
<td>(0)</td>
<td>ND – 3.9</td>
<td>ND</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>RADIONUCLIDES (SFPUC Regional System)</td>
<td>pCi/L</td>
<td></td>
<td>15</td>
<td></td>
<td>ND – 0.8</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>INORGANIC CHEMICALS</td>
<td>ppm</td>
<td></td>
<td>2</td>
<td>1</td>
<td>0.4 (9)</td>
<td></td>
</tr>
<tr>
<td>Fluoride (8)</td>
<td>ppm</td>
<td></td>
<td>1500</td>
<td>1</td>
<td>ND</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>DISINFECTION RESIDUALS (City of Hayward Distribution System)</td>
<td>ppm</td>
<td>MRDL =4</td>
<td>MRDLG =4</td>
<td>0.0 – 3.1</td>
<td>2.3</td>
<td>Drinking water disinfectant for treatment</td>
</tr>
<tr>
<td>Chlorine (10)</td>
<td>ppm</td>
<td></td>
<td>300</td>
<td>ND</td>
<td>90th Percentile</td>
<td></td>
</tr>
<tr>
<td>LEAD AND COPPER RULE STUDY (City of Hayward Tap Water)</td>
<td>Unit</td>
<td>AL (11)</td>
<td>PHG</td>
<td>Range</td>
<td>90th Percentile</td>
<td>Typical Sources in Drinking Water</td>
</tr>
<tr>
<td>Copper</td>
<td>ppb</td>
<td>1300</td>
<td>300</td>
<td><0.01 – 97.4</td>
<td>38.7 (12)</td>
<td>Corrosion of household plumbing systems</td>
</tr>
<tr>
<td>Lead</td>
<td>ppb</td>
<td>0.2</td>
<td><0.01 – 4.2</td>
<td></td>
<td></td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>
The detected chlorate in treated water is a degradation byproduct of sodium hypochlorite. Other Regulatory Level. In 2013, 0 out of 57 sampled residences exceeded the Action Level at consumer taps.

Water is disinfected with chloramine, a combination of chlorine and ammonia. The naturally fluoride level in the Hetch Hetchy was ND. Elevated fluoride levels in consumers. The CDPH specifies the fluoride levels in the treated water to be maintained within a range of 0.8 ppm - 1.5 ppm. In 2013, the range and average of our fluoride levels were 0.7 ppm - 1.4 ppm and 0.9 ppm, respectively. The SFPUC adds fluoride to an optimum level of 0.9 ppm to help prevent dental caries in consumers. The CDPH specifies the fluoride levels in the treated water to be maintained within a range of 0.8 ppm - 1.5 ppm. In 2013, the range and average of our fluoride levels were 0.7 ppm - 1.4 ppm and 0.9 ppm, respectively.

Turbidity is the water clarity indicator, it also indicates the quality of the water and the treatment system efficiency. (1) Turbidity is measured every four hours. These are monthly average turbidity values. (2) The highest turbidity of the unfiltered water in 2013 was 3.6 NTU. (3) The highest turbidity of the unfiltered water in 2013 was 3.6 NTU.

(5) Total organic carbon is a precursor for disinfection byproduct formation. The TT requirement applies to the filtered water from SVWTP only.

(6) This is the highest locational running annual average value. (7) Percent of monthly samples that are positive in Hayward tap water.

(8) The SFPUC adds fluoride to an optimum level of 0.9 ppm to help prevent dental caries in consumers. The CDPH specifies the fluoride levels in the treated water to be maintained within a range of 0.8 ppm - 1.5 ppm. In 2013, the range and average of our fluoride levels were 0.7 ppm - 1.4 ppm and 0.9 ppm, respectively. (9) The naturally fluoride level in the Hetch Hetchy was ND. Elevated fluoride levels in the SVWTP raw water were attributed to the transfer of fluoridated Hetch Hetchy water into the reservoirs.

(10) Water is disinfected with chloramine, a combination of chlorine and ammonia. Residual chlorine is measured.

(11) The 90th percentile level of lead and copper must be less than the action level.

(12) In 2013, 0 out of 57 sampled residences exceeded the Action Level at consumer taps.

(13) Other Regulatory Level.

(14) The detected chlorate in treated water is a degradation byproduct of sodium hypochlorite used by SFPUC for water disinfection.